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R has always had a rich set of modeling tools that
it inherited from S. For example, the formula
interface has made it simple to specify potentially
complex model structures.

R has cutting edge models. Many researchers in
various domains use R as their primary computing
environment and their work often results in R
packages.

It is easy to port or link to other applications. R
doesn't try to be everything to everyone. If you
prefer models implemented in C, C++, tensorflow ,
keras , python , stan , or Weka , you can access
these applications without leaving R.

However, there is a huge consistency problem.
For example:

There are two primary methods for specifying what
terms are in a model. Not all models have both.
99% of model functions automatically generate
dummy variables.
Sparse matrices can be used (unless the can't).
Many package developers don't know much about the
language and omit OOP and other core R components.

Two examples follow...

Modeling in R
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Between-Package Inconsistency

Syntax for computing predicted class probabilities:

Function Package Code

lda MASS predict(obj)

glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

logitboost LogitBoost predict(obj, type = "raw", nIter)

pamr.train pamr pamr.predict(obj, type = "posterior")
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Within-Package Inconsistency: glmnet  Predictions

The glmnet  model can be used to �t regularized generalized linear models with a mixture of L1 and L2
penalties.

We'll look at what happens when we get predictions for a regression model (i.e. numeric Y) as well as
classi�cation models where Y has two or three categorical values.

The models shown below contain solutions for three regularization values (  ).

The predict method gives the results for all three at once (�).

4 / 21



Numeric glmnet  Predictions

Predicting a numeric outcome for two new data points:

new_x

##             x1     x2     x3     x4
## sample_1 1.649 -0.483 -0.294 -0.815
## sample_2 0.656 -0.420  0.880  0.109

predict(reg_mod, newx = new_x)

##            s0   s1 s2
## sample_1 9.95 9.95 10
## sample_2 9.95 9.95 10

A matrix result and we will assume that the  values are in the same order as what we gave to the
model �t function.
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glmnet  Class Predictions

Predicting an outcome with two classes:

predict(two_class_mod, newx = new_x, type = "class")

##          s0  s1  s2 
## sample_1 "a" "b" "b"
## sample_2 "a" "b" "b"

Not factors! That's different from what is required for the y  argument. From ?glmnet :

For family="binomial"  [ y ] should be either a factor with two levels, or a two-column matrix of
counts or proportions

I'm guessing that this is because they want to keep the result a matrix (to be consistent).
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glmnet  Class Probabilities (Two Classes)

predict(two_class_mod, newx = new_x, type = "response")

##           s0  s1    s2
## sample_1 0.5 0.5 0.506
## sample_2 0.5 0.5 0.526

Okay, we get a matrix of the probability for the second level of the outcome factor.

To make this �t into most code, we can manually calculate the other probability. No biggie!
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predict(three_class_mod, newx = new_x, 
        type = "response")

## , , s0
## 
##              a     b     c
## sample_1 0.333 0.333 0.333
## sample_2 0.333 0.333 0.333
## 
## , , s1
## 
##              a     b     c
## sample_1 0.333 0.333 0.333
## sample_2 0.333 0.333 0.333
## 
## , , s2
## 
##              a     b     c
## sample_1 0.373 0.244 0.383
## sample_2 0.327 0.339 0.334

�

No more matrix results. 3D array and we get all of
the probabilities back this time.

Maybe a structure like this would work better:

## # A tibble: 6 x 4
##       a     b     c lambda
##   <dbl> <dbl> <dbl>  <dbl>
## 1 0.333 0.333 0.333   1   
## 2 0.333 0.333 0.333   1   
## 3 0.333 0.333 0.333   0.1 
## 4 0.333 0.333 0.333   0.1 
## 5 0.373 0.244 0.383   0.01
## 6 0.327 0.339 0.334   0.01

glmnet  Class Probabilities (Three Classes)
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What We Need

Unless you are doing a simple one-off data analysis, the lack of consistency between, and sometimes
within, R packages can be very frustrating.

If we could agree on a set of common conventions for interfaces, return values, and other components,
everyone's life would be easier.

Once we agree on conventions, two challenges are:

As of 8/2018, there are over 12K R packages on CRAN. How do we "harmonize" these without breaking
everything?

How can we guide new R users (or people unfamiliar with R) in making good choices in their
modeling packages?

These prospective and retrospective problems will be addressed in a minute.
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The tidyverse is an opinionated collection of R
packages designed for data science. All packages
share an underlying design philosophy, grammar,
and data structures.

The principles of the tidyverse:

1. Reuse existing data structures.
2. Compose simple functions with the pipe.
3. Embrace functional programming.
4. Design for humans.

This results in more speci�c conventions around
interfaces, function naming, etc. For example:

## [1] "glue_col"      "glue_collapse"
## [3] "glue_data"     "glue_data_col"
## [5] "glue_data_sql" "glue_sql"

There is also the notion of tidy data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Based on these ideas, we can create modeling
packages that have predictable results and are a
pleasure to use.

The Tidyverse
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Tidymodels

tidymodels  is a collection of modeling packages that live in the tidyverse and are designed in the same
way.

My goals for tidymodels are:

1. Encourage empirical validation and good methodology.

2. Smooth out diverse interfaces.

3. Build highly reusable infrastructure.

4. Enable a wider variety of methodologies.

The tidymodels  packages address the retrospective and prospective issues. We are also developing a set
of principles and templates to make prospective (new R packages) easy to create.
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Current Modeling Packages

broom  takes the messy output of built-in functions in R, such as lm , nls , or t.test , and turns them into tidy data frames.

dials  has tools for creating and validating tuning parameter values.

infer  is a modern approach to statistical inference.

recipes  is a general data preprocessor with a modern interface. It can create model matrices that incorporate feature
engineering, imputation, and other tools.

rsample  has infrastructure for resampling data so that models can be assessed and empirically validated.

tidyposterior  can be used to compare models using resampling and Bayesian analysis.

tidytext  contains tidy tools for quantitative text analysis, including basic text summarization, sentiment analysis, and text
modeling.

yardstick  contains tools for evaluating models (e.g. accuracy, RMSE, etc.)

More on the way... blog post.
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Loading the Meta-Package

library(tidymodels)

## ── Attaching packages ───────────────────────────────────────────────────── tidymodels 0.0.1 ──

##  ggplot2   3.0.0      recipes   0.1.3
##  tibble    1.4.2      broom     0.5.0
##  purrr     0.2.5      yardstick 0.0.1
##  dplyr     0.7.6      infer     0.3.1
##  rsample   0.0.2

## ── Conflicts ──────────────────────────────────────────────────────── tidymodels_conflicts() ──
##  purrr::accumulate()      masks foreach::accumulate()
##  dplyr::collapse()        masks glue::collapse()
##  Biobase::combine()       masks BiocGenerics::combine(), dplyr::combine()
##  rsample::fill()          masks tidyr::fill()
##  dplyr::filter()          masks stats::filter()
##  dplyr::lag()             masks stats::lag()
##  BiocGenerics::Position() masks ggplot2::Position(), base::Position()
##  recipes::step()          masks stats::step()
##  purrr::when()            masks foreach::when()
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broom  Example

Model �t from ?lm

summary(lm.D9)$coefficients

##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)    5.032      0.220   22.85 9.55e-15
## groupTrt      -0.371      0.311   -1.19 2.49e-01

broom::tidy(lm.D9)

## # A tibble: 2 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)    5.03      0.220     22.9  9.55e-15
## 2 groupTrt      -0.371     0.311     -1.19 2.49e- 1

Find the differences...
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library(caret)
data(BloodBrain)

dat <-
  data.frame(
    mol_weight = bbbDescr$mw, 
    log_ratio = logBBB
  )

set.seed(3555)
perms <-
  dat %>%
  specify(log_ratio ~ mol_weight) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 5000, type = "permute") %>%
  calculate(stat = "correlation", method = "spearman")

observed <- 
  dat %>%
  specify(log_ratio ~ mol_weight) %>%
  calculate(stat = "correlation", method = "spearman")  

perms %>% get_pvalue(obs_stat = observed, direction = "two_sided")

## # A tibble: 1 x 1
##   p_value
##     <dbl>
## 1  0.0854

perms %>%
  visualize(obs_stat = observed, direction = "two_sided")

Evaluating Hypotheses via infer

15 / 21



recipes  provides a dplyr -like utility for

De�ning roles of variables in a model (e.g. outcome,
predictor, etc).
One or more steps are speci�ed that do various types
of operations, such as centering, imputation, feature
extraction, term speci�cation, re-encodings, etc.

Using a recipe is a stage-wise process:

        recipe()              {define}
           ⬇                     ⬇  
        prep()                {estimate}
           ⬇                     ⬇  
     bake()/juice()           {apply}

bbb_data <- bbbDescr %>% mutate(log_ratio = logBBB)

rec <- recipe(log_ratio ~ ., data = bbb_data) %>%
  step_nzv(all_predictors()) %>%
  step_corr(all_predictors(), threshold = 0.75) %>%
  step_YeoJohnson(all_predictors()) %>% 
  step_interact(~ nbasic:rotatablebonds) %>% 
  step_center(all_predictors()) %>% 
  step_scale(all_predictors()) %>% 
  step_pca(all_predictors(), num = 3)

rec <- prep(rec, training = bbb_data)

bake(rec, bbb_data %>% slice(1:3))

## # A tibble: 3 x 4
##   log_ratio   PC1   PC2   PC3
##       <dbl> <dbl> <dbl> <dbl>
## 1      1.08  2.67 -7.88 -1.58
## 2     -0.4  -4.14 -2.15 -2.09
## 3      0.22  1.08  1.86  1.91

Recipes for Preprocessing Data
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tidyposter  and rsample  can be used to make
comparisons between and within types of
models.

A model is resampled and it's performance
metrics (e.g. , ROC AUC, etc.) can be used as
the outcome in a Bayesian meta-model. From
this, posteriors for the differences can be
computed.

Let's say that I have these two models:

coxph(Surv(time, status) ~ ph.ecog + age + sex, data = lung)
coxph(Surv(time, status) ~ ph.ecog + age,       data = lung)

I can compare them using a standard hierarchical
model comparison or a simple Wald-type test.
On this case, the Wald p-value is 0.00099. That
doesn't tell me much about the effect size.

Suppose I look at the change in the standard
concordance statistic between the two models?
What is the distribution of the change in
concordance when I remove sex ?

Cross-validation can be used to compute this
difference on out-of-sample data and a Bayesian
model can be used to compute the posterior for
the difference.

Comparing Models Using Resampling and Bayes
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A positive difference would imply that sex  is
important in explaining the outcome.

Results

## #  10-fold cross-validation repeated 10 times using stratifi
## # A tibble: 100 x 5
##    id       id2    full_model without_sex diff          
##  * <chr>    <chr>       <dbl>       <dbl> <chr>         
##  1 Repeat01 Fold01      0.701       0.687 worse  by 0.01
##  2 Repeat01 Fold02      0.570       0.554 worse  by 0.02
##  3 Repeat01 Fold03      0.731       0.702 worse  by 0.03
##  4 Repeat01 Fold04      0.599       0.550 worse  by 0.05
##  5 Repeat01 Fold05      0.594       0.528 worse  by 0.07
##  6 Repeat01 Fold06      0.742       0.663 worse  by 0.08
##  7 Repeat01 Fold07      0.525       0.514 worse  by 0.01
##  8 Repeat01 Fold08      0.714       0.674 worse  by 0.04
##  9 Repeat01 Fold09      0.491       0.549 better by 0.06
## 10 Repeat01 Fold10      0.764       0.692 worse  by 0.07
## # ... with 90 more rows
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Principles of Modeling Packages

We are in the process of developing a set of guidelines for making good modeling packages. For example:

Separate the interface that the modeler uses from the code to do the computations. They serve two very
different purposes.

Have multiple interfaces (e.g. formula, x/y, etc).

The user-facing interface should use the most appropriate data structures for the data (as opposed to the
computations). For example, factor outcomes versus 0/1 indicators and data frames versus matrices.

type = "prob"  for class probabilities � .

Use S3 methods.

The predict  method should give standardized, predictable results.

Rather than try to make methodologists into software developers, we will provide GitHub repositories with template
packages that can be used to meet these guidelines (along with documentation and examples on why).
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Next Steps

Hash out the principles of modeling functions. Let me know if you'd like to contribute.

Packages on the horizon:

parsnip : a uni�ed interface to models. This should signi�cantly reduce the amount of syntactical minutia
that you'll need to memorize by having one standardized model function across different packages and by
harmonizing the parameter names across models.

embed : an add-on package for recipes . This can be used to ef�ciently encode high-cardinality categorical
predictors using supervised methods such as likelihood encodings and entity embeddings.

A pipeline(ish) structure that can contain speci�cations for a model, recipe, feature �lter, and post-
processing. This will easily enable a data analysis process.

A model tuning package with grid search, Bayesian optimization, and other search algorithms.

A calibration package for post-processing regression and classi�cation predictions as well as implementing
equivocal zones.
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Thanks!
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