
Greatest Hits R Mixtape

Max Kuhn, Ph.D

Pfizer Global R&D

Groton, CT

max.kuhn@pfizer.com



Outline

⌅
Three Dots!

⌅
grid.arrange

⌅
Interactive graphics

Max Kuhn Greatest Hits R Mixtape 2/20

2/
20



In a World...
Suppose you have some data:

> head(dat)

RMSE Rsquared Date

1 0.6092888 0.9140404 2013-07-13

2 0.5905273 0.9032800 2013-07-14

3 0.5318338 0.9176118 2013-07-15

4 0.5594337 0.9168153 2013-07-16

5 0.5763207 0.9095581 2013-07-17

6 0.5551559 0.9197075 2013-07-18

> str(dat)

�data.frame�: 323 obs. of 3 variables:

$ RMSE : num 0.609 0.591 0.532 0.559 0.576 ...

$ Rsquared: num 0.914 0.903 0.918 0.917 0.91 ...

$ Date : chr "2013-07-13" "2013-07-14" "2013-07-15" "2013-07-16" ...

Max Kuhn Greatest Hits R Mixtape 3/20

3/
20



Analysis

Let’s say you want to do some analysis of these data:

⌅
convert the character strings to dates

⌅
smooth the data (using loess)

⌅
take the first derivative of the curve

Max Kuhn Greatest Hits R Mixtape 4/20

4/
20



Some Code

> foo <- function(x) {

+ library(lubridate)

+ x$Date <- ymd(x$Date)

+ x$Days <- difftime(x$Date, min(x$Date), units = "days")

+ mod <- loess(RMSE ~ as.numeric(Days), data = x)

+ x$pred <- predict(mod, x)

+ deriv <- c(NA, x$pred[-nrow(x)] - x$pred[-1])

+ x$deriv <- deriv

+ x

+ }

Max Kuhn Greatest Hits R Mixtape 5/20

5/
20



Smoothing Options

Right now, the code uses the default loess parameters. What

do we do if those are not good for these data?

We could add more options to foo to handle this:

> foo <- function(x, span = .2, degree = 1) {

+ # stuff...

+ mod <- loess(RMSE ~ as.numeric(Days),

+ data = x,

+ span = span,

+ degree = degree)

+ ## other stuff

+ }

Max Kuhn Greatest Hits R Mixtape 6/20

6/
20



A Better Method
That’s not very appealing, especially if there are a lot of options

that might need changing. Another option is to use the three

dots or ellipses:

We could add more options to foo to handle this:

> foo <- function(x, ...) {

+ library(lubridate)

+ x$Date <- ymd(x$Date)

+ x$Days <- difftime(x$Date, min(x$Date), units = "days")

+ mod <- loess(RMSE ~ as.numeric(Days), data = x, ...)

+ x$pred <- predict(mod, x)

+ deriv <- c(NA, x$pred[-nrow(x)] - x$pred[-1])

+ x$deriv <- deriv

+ x

+ }

Since span and degree are not options to foo, these get passed

to any function(x) that have the ... in their function call.

Max Kuhn Greatest Hits R Mixtape 7/20

7/
20



For Predictive Modeling

This is important to me since I maintain a package called caret,

which has wrappers for almost 200 di�erent predictive

modeling/machine learning functions.

train is a function that can be used to call specific models

without dealing with the syntactical di�erences/minutia of the

individual R functions. For example

> mod1 <- train(Class ~ ., data = training, method = "gbm")

>

> mod2 <- train(Class ~ ., data = training, method = "pls",

+ preProc = c("center", "scale"))

Max Kuhn Greatest Hits R Mixtape 8/20

8/
20



Two Levels of Arguments

For example, the three dots would allow users to pass arguments

for gbm in the call to train:

> mod1 <- train(Class ~ .,

+ data = training,

+ method = "gbm",

+ ## now args to gbm()

+ verbose = FALSE,

+ bag.fraction = 0.5)

Max Kuhn Greatest Hits R Mixtape 9/20

9/
20



Three Levels of Arguments

caret also has methods for feature selection. For example, gsfs

uses genetic algorithms to search for optimal subset of predictors

and this can be used to call train.

> mod3 <- gafs(x = x, y = y,

+ gafsControl = gafsControl(functions = caretGA),

+ ## now arguments to train()

+ method = �mda�,

+ tuneLength = 5,

+ ## now arguments to mda()

+ start.method = "kmeans")

Max Kuhn Greatest Hits R Mixtape 10/20

10/
20



grid.arrange

I would like to make this plot:

0.5

1.0

1.5

Jul Oct Jan Apr
Date

R
M
SE

0 10 20 30

I’ll use the grid.arrange function in the ggplot2 gridExtra

package to do this (thanks to David Winsemius for keeping me

honest).

Max Kuhn Greatest Hits R Mixtape 11/20

11/
20



The Left–Hand Side
The line plot on the left isn’t that hard to create:

> ggplot(dat) +

+ geom_line(aes(x = Date, y = RMSE), lwd = 1, alpha = .5) +

+ xlab("Date")

0.25

0.50

0.75

1.00

1.25

Jul Oct Jan Apr
Date

R
M
SE

Max Kuhn Greatest Hits R Mixtape 12/20

12/
20



The Right–Hand Side
Neither is the histogram

> ggplot(dat) +

+ geom_histogram(aes(x = RMSE), binwidth = .05, alpha = .5) +

+ coord_flip()

0.5

1.0

1.5

0 10 20 30
count

R
M
SE

Max Kuhn Greatest Hits R Mixtape 13/20

13/
20



Putting them together
Neither is the histogram

> grid.arrange(scatter_obj, hist_obj,

+ ncol=2, nrow=1,

+ widths=c(5, 1), heights=1)

0.25

0.50

0.75

1.00

1.25

Jul Oct Jan Apr
Date

R
M
SE

0.5

1.0

1.5

0102030
count

R
M
SE

Max Kuhn Greatest Hits R Mixtape 14/20

14/
20



Oh No
Besides the obvious whitespace problem, note that the y–axis

range is not the same in both plots.

Let’s fix the range issue first by presetting the values and get rid

of the histogram labels:

> rmse_range <- extendrange(dat$RMSE)

> scatter_obj <- scatter_obj + ylim(rmse_range)

> hist_obj <- hist_obj+ xlim(rmse_range) + xlab("") + ylab("")

0.5

1.0

1.5

Jul Oct Jan Apr
Date

R
M
SE

0.5

1.0

1.5

0102030

Max Kuhn Greatest Hits R Mixtape 15/20

15/
20



Ticks

Now let’s get rid of the y-axis tick marks on the histogram:

> hist_obj <- hist_obj +

+ theme(axis.ticks = element_blank(),

+ axis.text.y = element_blank())

0.5

1.0

1.5

Jul Oct Jan Apr
Date

R
M
SE

0102030

Max Kuhn Greatest Hits R Mixtape 16/20

16/
20



Almost There!

For the last part, we need to set the plot margins for both

figures. This took a lot of experimentation:

> scatter_margins <- c(top = 3, right = 6, bottom = 2, left = 2)

> hist_margins <- c(top = 3, right = 4, bottom = 2, left = -14)

>

> hist_obj <- hist_obj +

+ theme(plot.margin = unit(hist_margins, "mm"),

+ axis.ticks = element_blank(),

+ axis.text.y = element_blank())

>

> scatter_obj <- scatter_obj +

+ theme(plot.margin = unit(scatter_margins, "mm"))

Max Kuhn Greatest Hits R Mixtape 17/20

17/
20



Finally!

0.5

1.0

1.5

Jul Oct Jan Apr
Date

R
M
SE

0 10 20 30

Max Kuhn Greatest Hits R Mixtape 18/20

18/
20



Interactive Graphics

What I’d like to have is the ability to create visualizations that

have interactivity in the sense that you can zoom axes and get

more information from individual data points.

For the previous line plot, that isn’t hard to do with rCharts and

Morris plots:

> library(rCharts) ## on github

> m1 <- mPlot(x = "Date", y = "RMSE", type = "Line", data = dat)

> m1$set(pointSize = 0, lineWidth = 1)

> m1

In general though, this isn’t really solved (yet) and rCharts is

really rough at this time.

Max Kuhn Greatest Hits R Mixtape 19/20

19/
20



Shiny!

We use RStudio’s shiny package and server a good deal and love

it.

We use it to give our clients semi–interactive access to the

results of analyses that we have put together.

For me, I would rather put more biological CPU cycles into

e�ective ways to communicate results than into new ways to

generate p–values and FDR corrections.

Max Kuhn Greatest Hits R Mixtape 20/20

20/
20


