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“Predictive Modeling”



Define That!

Rather than saying that method X is a predictive model, I would
say:

Predictive Modeling
is the process of creating a model whose primary goal is to
achieve high levels of accuracy.

In other words, a situation where we are concerned with making
the best possible prediction on an individual data instance.

(aka pattern recognition)(aka machine learning)
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Models

So, in theory, a linear or logistic regression model is a predictive
model?

Yes.

As will be emphasized during this talk:

⌅ the quality of the prediction is the focus
⌅ model interpretability and inferential capacity are not as

important
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Example Applications



Examples

⌅
spam detection: we want the most accurate prediction that
minimizes false positives and eliminates spam

⌅
plane delays, travel time, etc.

⌅
customer volume

⌅
sentiment analysis of text

⌅
sale price of a property

For example, does anyone care why an email or SMS is labeled as
spam?
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Quantitative Structure Activity Relationships
(QSAR)

Pharmaceutical companies screen millions of molecules to see if
they have good properties, such as:

⌅ biologically potent
⌅ safe
⌅ soluble, permeable, drug–like, etc

We synthesize many molecules and run lab tests (“assays”) to
estimate the characteristics listed above.

When a medicinal chemist designs a new molecule, he/she would
like a prediction to help assess whether we should synthesized it.
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Medical Diagnosis

A patient might be concerned about having cancer on the basis
of some on physiological condition their doctor has observed.

Any result based on imaging or a lab test should, above all, be as
accurate as possible (more on this later).

If the test does indicate cancer, very few people would want to
know if it was due to high levels of:
⌅ human chorionic gonadotropin (HCG)
⌅ alpha-fetoprotein (AFP) or
⌅ lactate dehydrogenase (LDH)

Accuracy is the concern
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Managing Customer Churn/Defection

When a customer has the potential to switch vendors (e.g. phone
contract ends), we might want to estimate
⌅ the probability that they will churn
⌅ the expected monetary loss from churn

Based on these quantities, you may want to o�er a customer an
incentive to stay.

Poor predictions will result in loss of revenue from a customer
loss or from a inappropriately applied incentive.

The goal is to minimize financial loss at the individual customer
level
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An Overview of the Modeling Process



Cell Segmentation
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Cell Segmentation

Individual cell results are aggregated so that decisions can be
made about specific compounds

Improperly segmented objects might compromise the quality of
the data so an algorithmic filter is needed.

In this application, we have measurements on the size, intensity,
shape or several parts of the cell (e.g. nucleus, cell body,
cytoskeleton).

Can these measurements be used to predict poorly segmentation
using a set of manually labeled cells?
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The Data

Hill et al (2007) scored 2019 cells into these two bins:
well–segmented (WS) or poorly–segmented (PS).

There are 58 measurements in each cell that can be used as
predictors.

The data are in the caret package.
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Model Building Steps

Common steps during model building are:
⌅ estimating model parameters (i.e. training models)
⌅ determining the values of tuning parameters that cannot be

directly calculated from the data
⌅ calculating the performance of the final model that will

generalize to new data
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Model Building Steps

How do we “spend” the data to find an optimal model? We
typically split data into training and test data sets:
⌅

Training Set: these data are used to estimate model
parameters and to pick the values of the complexity
parameter(s) for the model.

⌅
Test Set (aka validation set): these data can be used to get
an independent assessment of model e�cacy. They should not
be used during model training.
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Spending Our Data

The more data we spend, the better estimates we’ll get (provided
the data is accurate). Given a fixed amount of data,
⌅ too much spent in training won’t allow us to get a good

assessment of predictive performance. We may find a model
that fits the training data very well, but is not generalizable
(over–fitting)

⌅ too much spent in testing won’t allow us to get good
estimates of model parameters
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Spending Our Data

Statistically, the best course of action would be to use all the
data for model building and use statistical methods to get good
estimates of error.

From a non–statistical perspective, many consumers of of these
models emphasize the need for an untouched set of samples the
evaluate performance.

The authors designated a training set (n = 1009) and a test set
(n = 1010).
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Over–Fitting

Over–fitting occurs when a model inappropriately picks up on
trends in the training set that do not generalize to new samples.

When this occurs, assessments of the model based on the
training set can show good performance that does not reproduce
in future samples.
Some models have specific “knobs” to control over-fitting
⌅ neighborhood size in nearest neighbor models is an example
⌅ the number if splits in a tree model
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Over–Fitting

Often, poor choices for these parameters can result in over-fitting

For example, the next slide shows a data set with two predictors.
We want to be able to produce a line (i.e. decision boundary)
that di�erentiates two classes of data.

Two new points are to be predicted. A 5–nearest neighbor model
is illustrated.
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K–Nearest Neighbors Classification
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Over–Fitting

On the next slide, two classification boundaries are shown for the
a di�erent model type not yet discussed.

The di�erence in the two panels is solely due to di�erent choices
in tuning parameters.

One over–fits the training data.
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Two Model Fits
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Characterizing Over–Fitting Using the Training Set

One obvious way to detect over–fitting is to use a test set.
However, repeated “looks” at the test set can also lead to
over–fitting

Resampling the training samples allows us to know when we are
making poor choices for the values of these parameters (the test
set is not used).

Examples are cross–validation (in many varieties) and the
bootstrap.

These procedures repeated split the training data into subsets
used for modeling and performance evaluation.

Max Kuhn Predictive Modeling 24/65

24/
65



The Big Picture
We think that resampling will give us honest estimates of future
performance, but there is still the issue of which sub–model to
select (e.g. 5 or 10 NN).

One algorithm to select sub–models:

Define sets of model parameter values to evaluate;
for each parameter set do

for each resampling iteration do

Hold–out specific samples ;
Fit the model on the remainder;
Predict the hold–out samples;

end

Calculate the average performance across hold–out predictions
end

Determine the optimal parameter value;
Create final model with entire training set and optimal parameter
value;
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K–Nearest Neighbors Tuning
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Next Steps
Normally, we would try di�erent approaches to improving
performance:
⌅ di�erent models,
⌅ other pre–processing techniques,
⌅ model ensembles, and/or
⌅ feature selection (i.e. variable selection)

For example, the degree of correlation between the predictors in
these data is fairly high. This may have had a negative impact on
the model.

We can fit another model that uses a su�cient number of
principal components in the K–nearest neighbor model (instead
of the original predictors).
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Pre-Processing Comparison
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Evaluating the Final Model Candidate

Suppose we evaluated a panel of models and the cross–validation
results indicated that the K–nearest neighbor model using PCA
had the best cross–validation results.

We would use the test set to verify that there were no
methodological errors.

The test set accuracy was 80.7%.

The CV accuracy was 82%.

Pretty Close!
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Segmentation CV Results for Di�erent Models

Confidence Level: 0.95
Accuracy
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Comparisons to Traditional Statistical
Analyses



Good References On This Topic

Breiman, L. (1997). No Bayesians in foxholes. IEEE Expert,
12(6), 21–24.

Breiman, L. (2001). Statistical modeling: The two cultures.
Statistical Science, 16(3), 199–215. (plus discussants)

Ayres, I. (2008). Super Crunchers: Why Thinking-By-Numbers is

the New Way To Be Smart, Bantam.

Shmueli, G. (2010). To explain or to predict? Statistical Science,
25(3), 289–310.

Boulesteix, A.-L., & Schmid, M. (2014). Machine learning versus
statistical modeling. Biometrical Journal, 56(4), 588–593. (and
other articles in this issue)
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Empirical Validation
Previously there was a emphasis on empirical assessments of
accuracy.

While accuracy isn’t the best measure, metrics related to errors
of some sort are way more important here than in traditional
statistics.

Statistical criteria (e.g. lack of fit tests, p–values, likelihoods,
etc.) are not directly related to performance.
Friedman (2001) describes an example related to boosted trees
with MLE:

“[...] degrading the likelihood by overfitting actually

improves misclassification error rates. Although perhaps

counterintuitive, this is not a contradiction; likelihood and

error rate measure di�erent aspects of fit quality.”
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Empirical Validation

Even some measure that are asymptotically related to error rates
(e.g. AIC, BIC) are still insu�cient.

Also, a number of statistical criteria (e.g. adjusted R2) require
degrees of freedom. In many predictive models, these do not
exist or are much larger than the training set size.

Finally, there is often an interest in measuring nonstandard loss

functions and optimizing models on this basis.

For the customer churn example, the loss of revenue related to
false negatives and false positives may be di�erent. The loss
function may not fit nicely into standard decision theory so
evidence–based assessments are important.
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Statistical Formalism

Traditional statistics are often used for making inferential
statements regarding parameters or contrasts of parameters.

For this reason, there is a fixation on the appropriateness of the
models related to
⌅ necessary distributional assumptions required for theory
⌅ relatively simple model structure to keep the math trackable
⌅ the sanctity of degrees of freedom.

This is critical to make appropriate inferences on model
parameters.

However, letting these go allows the user greater flexibility to
increase accuracy.
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Examples

⌅ complex or nonlinear pre–processing (e.g. PCA, spatial sign)
⌅ ensembles of models (boosting, bagging, random forests)
⌅ overparameterized but highly regularized nonlinear models

(SVN, NNets)
⌅ Quinlan (1993) describing pessimistic pruning, notes that it:

“does violence to statistical notions of sampling and

confidence limits, so the reasoning should be taken with a

grain of salt.”

⌅ Breiman (1997) notes that there were “No Bayesians in
foxholes.”
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Three Sweeping Generalizations About Models

1 In the absence of any knowledge about the prediction
problem, no model can be said to be uniformly better than any
other (No Free Lunch theorem)

2 There is an inverse relationship between model accuracy and
model interpretability

3 Statistical validity of a model is not always connected to
model accuracy
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Cross–Validation Cost Estimates
(HPC Case Study, APM , pg 454)

Cost

C5.0
Random Forests

Bagging
SVM (Weights)

C5.0 (Costs)
CART (Costs)

Bagging (Costs)
SVM

Neural Networks
CART

LDA (Sparse)
LDA
FDA
PLS

0.2 0.3 0.4 0.5 0.6 0.7 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

Max Kuhn Predictive Modeling 38/65

38/
65



Unmet Challenges in Applied Modeling



Diminishing Returns on Models

Honestly, I think that we have plenty of e�ective models.

Very few problems are solved by inventing yet another predictive
model.

Exceptions:
⌅ using unlabeled data
⌅ severe class imbalances
⌅ applicability domain techniques and prediction confidence

assessments

It is more important to improve the features that go into the
model.
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“Feature Engineering”

For example, I have a data set of daily measurements on public
transit and one possible predictor is the date.

How should we encode this?

⌅ day of the month, day of the year?
⌅ week? month? year? (numeric or categorical?)
⌅ day of the week?
⌅ is it a holiday?
⌅ is it during the school semester?

Feature engineering try to enter the predictor(s) into a model in
a way that maximizes the benefit to the model.
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“Feature Engineering”

Some algorithmic feature engineering algorithms exist such as
MARS, autoencoders, PCA, ICA, NNMF, etc.

GAMs can also be useful to elucidate non–linear relationships
between an outcome and a predictor.

Better interaction and sub–space detection techniques would also
be a big help.

The key is to have an algorithmic method for reducing bias in
low-complexity model without selection bias or overfitting.
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Ethical Considerations



Ethical Considerations

There are some situations where using a sub–optimal model can
be unethical.

My experiences in molecular diagnostics gave me some
perspective on the friction point between pure performance and
notions about validity.

Another generalization: doctors and regulators are apprehensive
about black–box models since they cannot make sense of it and
assume that the validation of these models is lacking.

I had an experience as a “end user” of a model (via a lab test)
when I was developing algorithms for a molecular diagnostic
company.
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Antimicrobial Susceptibility Testing
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Klebsiella pneumoniae

klebsiella-pneumoniae.org/
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Predictive Models with Big Data



What About Big Data?

The advantages and issues related to Big Data can be broken
down into two areas:

⌅ Big N : more samples or cases
⌅ Big P : more variables or attributes or fields

Mostly, I think the catchphrase is associated more with N than
P .

Does Big Data solve my problems?

Maybe

1

1the basic answer given by every statistician throughout time
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Can You Be More Specific?

It depends on
⌅ what are you using it for?
⌅ does it solve some unmet need?
⌅ does it get in the way?

Basically, it comes down to:

Bigger Data ”= Better Data

at least not necessarily.
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Big N - Interpolation

One situation where it probably doesn’t help is when samples are
added within the mainstream of the data

In e�ect, we are just filling in the predictor space by increasing
the granularity.

After the first 10,000 or so observations, the model will not
change very much.

This does pose an interesting interaction within the
variance–bias trade o�.

Big N goes a long way to reducing the model variance. Given
this, can high variance/low bias models be improved?
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High Variance Model with Big N

Maybe.

Many high(ish) variance/low bias models (e.g. trees, neural
networks, etc.) tend to be very complex and computationally
demanding.

Adding more data allows these models to more accurately reflect
the complexity of the data but would require specialized solutions
to be feasible.

At this point, the best approach is supplanted by the available
approaches (not good).

Form should still follow function.

Max Kuhn Predictive Modeling 52/65

52/
65



Model Variance and Bias
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Low Variance Model with Big N

What about low variance/high bias models (e.g. logistic and
linear regression)?

There is some room here for improvement since the abundance of
data allows more opportunities for exploratory data analysis to
tease apart the functional forms to lower the bias (i.e. improved
feature engineering) or to select features.

For example, non–linear terms for logistic regression models can
be parametrically formalized based on the results of spline or
loess smoothers.
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Diminishing Returns on N ú

At some point, adding more (ú of the same) data does not do
any good.

Performance stabilizes but computational complexity increases.

The modeler becomes hand–cu�ed to whatever technology is
available to handle large amounts of data.

Determining what data to use is more important than worrying
about the technology required to fit the model.
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Global Versus Local Models in QSAR
When developing a compound, once a “hit” is obtained, the
chemists begin to tweak the structure to make improvements.
The leads to a chemical series

We could build QSAR models on the large number of existing
compounds (a global model) or on the series of interest (a local
model).

Our experience is that local models beat global models the
majority of the time.

Here, fewer (of the most relevant) compounds are better.

Our first inclination is to use all the data because our (overall)
error rate should get better.

Like politics, All Problems Are Local.
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Data Quality (QSAR Again)
One “Tier 1” screen is an assay for logP (the partition
coe�cient) which we use as a measure of “greasyness”.

Tier 1 means that logP is estimated for most compounds (via
model and/or assay)

There was an existing, high–throughput assay on a large number
of historical compounds. However, the data quality was poor.

Several years ago, a new assay was developed that was lower
throughput and higher quality. This became the default assay for
logP.

The model was re-built on a small (N ¥ 1, 000) set chemically
diverse compounds.

In the end, fewer compounds were assayed but the model
performance was much better and costs were lowered.
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Big N and/or P - Reducing Extrapolation

However, Big N might start to sample from rare populations.

For example:
⌅ a customer cluster that is less frequent but has high

profitability (via Big N).
⌅ a specific mutation or polymorphism (i.e. a rare event) that

helps derive a new drug target (via Big N and Big P )
⌅ highly non–linear “activity cli�s” in computational chemistry

can be elucidated (via Big N)

Now, we have the ability to solve some unmet need.
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Thanks!



Backup Slides



How Does Statistics Contribute to Predictive
Modeling?

Many statistical principals still apply and have greatly improved
the field:

⌅ resampling
⌅ the variance–bias tradeo�
⌅ sampling bias in big data
⌅ parsimony principal (AOTBE, keep the simpler model)
⌅ L1 and/or L2 regularization

Statistical improvements to boosting are a great example of this.
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What Can Drive Choice of
Methodology?



Important Considerations

It is fairly common to have a number of di�erent models with
equivalent levels of performance.

If a predictive model will be deployed, there are a few practical
considerations that might drive the choice of model.
⌅ if the prediction equation is to be numerically optimized,

models with smooth functions might be preferable.
⌅ the characteristics of the data (e.g. multicollinearity,

imbalanced, etc) will often constrain the feasible set of models.
⌅ large amounts of unlabeled data can be exploited by some

models
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Ease of Use/Model Development

If a large number of models will be created, using a low

maintenance technique is probably a good idea.

QSAR is a good example. Most companies maintain a large
number of models for di�erent endpoints. These models are
constantly updated too.

Trees (and their ensembles) tend to be low maintenance; neural
networks are not.

However, if the model must have the absolute best possible error
rate, you might be willing to put a lot of work into the model
(e.g. deep neural networks)
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How will the model be deployed?
If the prediction equation needs to be encoded into software or a
database, concise equations have the advantage.

For example, random forests require a large number of unpruned
trees. Even for a reasonable data set, the total forest can have
thousands of terminal nodes (39,437 if/then statements for the
cell model)

Bagged trees require dozens of trees and might yield the same
level of performance but with a smaller footprint

Some models (K-NN, support vector machines) can require
storage of the original training set, which may be infeasible.

Neural networks, MARS and a few other models can yield
compact nonlinear prediction equations.
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