
Applied Predictive Modeling
Central Iowa R Users Group

Max Kuhn

Pfizer R&D

“Predictive Modeling”

Define That!

Rather than saying that method X is a predictive model, I would say:

Predictive Modeling

is the process of creating a model whose primary goal is to achieve high
levels of accuracy.

In other words, a situation where we are concerned with making the best
possible prediction on an individual data instance.

(aka pattern recognition)(aka machine learning)

Kuhn (Pfizer R&D) APM 3 / 57

Models

So, in theory, a linear or logistic regression model is a predictive model?

Yes.

As will be emphasized during this talk:

the quality of the prediction is the focus

model interpretability and inferential capacity are not as important

Kuhn (Pfizer R&D) APM 4 / 57

Examples

spam detection: we want the most accurate prediction that
minimizes false positives and eliminates spam

plane delays, travel time, etc.

customer volume

sentiment analysis of text

sale price of a property

For example, does anyone care why an email or SMS is labeled as spam?

Kuhn (Pfizer R&D) APM 5 / 57

Quantitative Structure Activity Relationships (QSAR)

Pharmaceutical companies screen millions of molecules to see if they have
good properties, such as:

biologically potent

safe

soluble, permeable, drug–like, etc

We synthesize many molecules and run lab tests (“assays”) to estimate
the characteristics listed above.

When a medicinal chemist designs a new molecule, he/she would like a
prediction to help assess whether we should synthesized it.

Kuhn (Pfizer R&D) APM 6 / 57

Cell Segmentation

Kuhn (Pfizer R&D) APM 7 / 57

Cell Segmentation

Individual cell results are aggregated so that decisions can be made about
specific compounds

Improperly segmented objects might compromise the quality of the data so
an algorithmic filter is needed.

In this application, we have measurements on the size, intensity, shape or
several parts of the cell (e.g. nucleus, cell body, cytoskeleton).

Can these measurements be used to predict poorly segmentation using a
set of manually labeled cells?

Kuhn (Pfizer R&D) APM 8 / 57

The Data
Hill et al (2007) scored 2019 cells into these two bins: well–segmented
(WS) or poorly–segmented (PS). The data are in the caret package.

There are 58 measurements in each cell that can be used as predictors.

> library(caret)

> data(segmentationData)

> dim(segmentationData)

[1] 2019 61

> str(segmentationData[, 1:9])

'data.frame': 2019 obs. of 9 variables:

$ Cell : int 207827637 207932307 207932463 207932470 207932455 207827656 207827659 207827661 207932479 207932480 ...

$ Case : Factor w/ 2 levels "Test","Train": 1 2 2 2 1 1 1 1 1 1 ...

$ Class : Factor w/ 2 levels "PS","WS": 1 1 2 1 1 2 2 1 2 2 ...

$ AngleCh1 : num 143.25 133.75 106.65 69.15 2.89 ...

$ AreaCh1 : int 185 819 431 298 285 172 177 251 495 384 ...

$ AvgIntenCh1: num 15.7 31.9 28 19.5 24.3 ...

$ AvgIntenCh2: num 4.95 206.88 116.32 102.29 112.42 ...

$ AvgIntenCh3: num 9.55 69.92 63.94 28.22 20.47 ...

$ AvgIntenCh4: num 2.21 164.15 106.7 31.03 40.58 ...

Kuhn (Pfizer R&D) APM 9 / 57

Model Building Steps

Common steps during model building are:

estimating model parameters (i.e. training models)

determining the values of tuning parameters that cannot be directly
calculated from the data

calculating the performance of the final model that will generalize to
new data

Kuhn (Pfizer R&D) APM 10 / 57

Model Building Steps

How do we “spend” the data to find an optimal model? We typically split
data into training and test data sets:

Training Set: these data are used to estimate model parameters and
to pick the values of the complexity parameter(s) for the model.

Test Set (aka validation set): these data can be used to get an
independent assessment of model e�cacy. They should not be used
during model training.

Kuhn (Pfizer R&D) APM 11 / 57

Spending Our Data

The more data we spend, the better estimates we’ll get (provided the data
is accurate). Given a fixed amount of data,

too much spent in training won’t allow us to get a good assessment
of predictive performance. We may find a model that fits the training
data very well, but is not generalizable (over–fitting)

too much spent in testing won’t allow us to get good estimates of
model parameters

Kuhn (Pfizer R&D) APM 12 / 57

Spending Our Data

Statistically, the best course of action would be to use all the data for
model building and use statistical methods to get good estimates of error.

From a non–statistical perspective, many consumers of these models
emphasize the need for an untouched set of samples to evaluate
performance.

The authors designated a training set (n = 1009) and a test set
(n = 1010). We’ll use these:

> ## remove the cell identifier

> segmentationData$Cell <- NULL

> seg_train <- subset(segmentationData, Case == "Train")

> seg_test <- subset(segmentationData, Case == "Test")

>

> seg_train$Case <- NULL

> seg_test$Case <- NULL

Kuhn (Pfizer R&D) APM 13 / 57

Spending Our Data

If you wanted to do a random 50/50 split of the data, there is a function
in caret that can be used:

> ## NOT executed...

> ## make a balanced random split

> in_train <- createDataPartition(segmentationData$Class, p = 0.5, list = FALSE)

>

> ## �in_train� is set of row indices that are selected to go

> ## into the training set

> train_data <- segmentationData[in_train,]

> test_data <- segmentationData[-in_train,]

Kuhn (Pfizer R&D) APM 14 / 57

Over–Fitting

Over–fitting occurs when a model inappropriately picks up on trends in the
training set that do not generalize to new samples.

When this occurs, assessments of the model based on the training set can
show good performance that does not reproduce in future samples.

Some models have specific “knobs” to control over-fitting

neighborhood size in nearest neighbor models is an example

the number if splits in a tree model

Kuhn (Pfizer R&D) APM 15 / 57

Over–Fitting

Often, poor choices for these parameters can result in over-fitting

For example, the next slide shows a data set with two predictors. We want
to be able to produce a line (i.e. decision boundary) that di↵erentiates two
classes of data.

Two new points are to be predicted. A 5–nearest neighbor model is
illustrated.

Kuhn (Pfizer R&D) APM 16 / 57

K–Nearest Neighbors Classification

Predictor A

Pr
ed

ic
to

r B

−4

−2

0

2

4

−4 −2 0 2 4

Class1 Class2

Kuhn (Pfizer R&D) APM 17 / 57

Over–Fitting

On the next slide, two classification boundaries are shown for the a
di↵erent model type not yet discussed.

The di↵erence in the two panels is solely due to di↵erent choices in tuning
parameters.

One over–fits the training data.

Kuhn (Pfizer R&D) APM 18 / 57

Two Model Fits

Predictor A

Pr
ed

ic
to

r B

−4

−2

0

2

4

−4 −2 0 2 4

Model #1

−4 −2 0 2 4

Model #2

Kuhn (Pfizer R&D) APM 19 / 57

Characterizing Over–Fitting Using the Training Set

One obvious way to detect over–fitting is to use a test set. However,
repeated “looks” at the test set can also lead to over–fitting

Resampling the training samples allows us to know when we are making
poor choices for the values of these parameters (the test set is not used).

Examples are cross–validation (in many varieties) and the bootstrap.

These procedures repeated split the training data into subsets used for
modeling and performance evaluation.

Kuhn (Pfizer R&D) APM 20 / 57

K–Fold Cross–Validation

Kuhn (Pfizer R&D) APM 21 / 57

The Big Picture

We think that resampling will give us honest estimates of future
performance, but there is still the issue of which sub–model to select (e.g.
5 or 10 NN).

One algorithm to select sub–models:

Define sets of model parameter values to evaluate;
for each parameter set do

for each resampling iteration do
Hold–out specific samples ;
[optional] pre–process the predictor data;
Fit the model on the remainder;
Predict the hold–out samples;

end
Calculate the average performance across hold–out predictions

end
Determine the optimal parameter value;
Create final model with entire training set and optimal parameter value;

Kuhn (Pfizer R&D) APM 22 / 57

K–Nearest Neighbors Tuning

0.87

0.88

0.89

0.90

0 5 10 15 20 25
#Neighbors

Ac
cu

ra
cy

 (C
ro

ss
−V

al
id

at
io

n)

Kuhn (Pfizer R&D) APM 23 / 57

K–Nearest Neighbors Tuning – Individual Resamples

0.825

0.850

0.875

0.900

0.925

0.950

0 5 10 15 20 25
#Neighbors

Ac
cu
ra
cy

Kuhn (Pfizer R&D) APM 24 / 57

Typical Process for Model Building

Now that we know how to evaluate models on the training set, we can try
di↵erent techniques (including pre-processing) and try to optimize model
performance.

Performance might not be the only consideration. Others might include:

simplicty of prediction

redusing the number of predictors (aka features) in the model to
reduce cost or complexity

smoothness of the prediction equation

robustness of the solution

Once we have 1-2 candidate models, we can evaluate the results on the
test set.

Kuhn (Pfizer R&D) APM 25 / 57

Linear Discriminant Analysis

A simple model for fitting linear class boundaries to these data is linear
discriminant analysis (LDA).

The model computes the mean vector for the data within each class and a
common covariance matrix across the entire training set then uses the
di↵erences (discriminant functions):

D(u) = u

0S�1(x̄P � x̄W)

A few packages have this model, but we’ll use the lda function in the
MASS package:

> library(MASS)

> lda_fit <- lda(Class ~ ., data = seg_train, tol = 1.0e-15)

Kuhn (Pfizer R&D) APM 26 / 57

Linear Discriminant Analysis Predictions

This object doesn’t provide any resampled estimate of performance but we
can get predictions:

> predict(lda_fit, newdata = seg_train[1:3,])

$class

[1] WS WS PS

Levels: PS WS

$posterior

PS WS

2 0.26358158 0.73641842

3 0.05269107 0.94730893

4 0.95044135 0.04955865

$x

LD1 LD2

2 1.055130 -1.50625016

3 2.015937 -0.26134111

4 -1.013353 -0.07737231

Kuhn (Pfizer R&D) APM 27 / 57

Estimating Performance For Classification

For classification models:

overall accuracy can be used, but this may be problematic when the
classes are not balanced.

the Kappa statistic takes into account the expected error rate:

 =
O � E

1� E

where O is the observed accuracy and E is the expected accuracy
under chance agreement

For 2–class models, Receiver Operating Characteristic (ROC)
curves can be used to characterize model performance (more later)

Kuhn (Pfizer R&D) APM 28 / 57

Estimating Performance For Classification

A “ confusion matrix” is a cross–tabulation of the observed and predicted
classes

R functions for confusion matrices are in the e1071 package (the
classAgreement function), the caret package (confusionMatrix), the mda
(confusion) and others.

ROC curve functions are found in the pROC package (roc) ROCR package
(performance), the verification package (roc.area) and others.

We’ll use the confusionMatrix function and the pROC package later.

Kuhn (Pfizer R&D) APM 29 / 57

Estimating Performance For Classification

For 2–class classification models we might also be interested in:

Sensitivity: given that a result is truly an event, what is the
probability that the model will predict an event results?

Specificity: given that a result is truly not an event, what is the
probability that the model will predict a negative results?

(an “event” is really the event of interest)

These conditional probabilities are directly related to the false positive and
false negative rate of a method.

Unconditional probabilities (the positive–predictive values and
negative–predictive values) can be computed, but require an estimate of
what the overall event rate is in the population of interest (aka the
prevalence)

Kuhn (Pfizer R&D) APM 30 / 57

Estimating Performance For Classification

For our example, let’s choose the event to be a poorly segmented cell:

Sensitivity =
PS predicted to be PS

truly PS

Specificity =
truly WS predicted to be WS

truly WS

The caret package has functions called sensitivity and specificity

Kuhn (Pfizer R&D) APM 31 / 57

Probability Cuto↵s

Most classification models produce a predicted class probability that is
converted into a predicted class.

For two classes, the 50% cuto↵ is customary; if the probability that a cell is
poorly segmented is � 50%, they would be labelled as a poorly segmented.

What happens when you change the cuto↵?

Increasing it makes it harder to be called PS ! fewer predicted events,
sensitivity ", specificity #

Decreasing the cuto↵ makes it easier to be called PS ! more predicted
events, sensitivity #, specificity "

Kuhn (Pfizer R&D) APM 32 / 57

ROC Curve

With two classes the Receiver Operating Characteristic (ROC) curve can
be used to estimate performance using a combination of sensitivity and
specificity.

Here, many alternative cuto↵s are evaluated and, for each cuto↵, we
calculate the sensitivity and specificity.

The ROC curve plots the sensitivity (eg. true positive rate) by one minus
specificity (eg. the false positive rate).

The area under the ROC curve is a common metric of performance.

Kuhn (Pfizer R&D) APM 33 / 57

Example ROC Curve

Specificity

Se
ns

iti
vi

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 0.8 0.6 0.4 0.2 0.0

0.00 (Sp = 0.00, Sn = 1.00)0.20 (Sp = 0.76, Sn = 0.97)
0.50 (Sp = 0.86, Sn = 0.93)

0.80 (Sp = 0.95, Sn = 0.82)

1.00 (Sp = 1.00, Sn = 0.00)

Kuhn (Pfizer R&D) APM 34 / 57

Creating the ROC Curve
We’ll use the pROC function to compute and plot the ROC curve.

First, we need a set of predicted class probabilities and then we use the
roc function

> lda_test_pred <- predict(lda_fit, newdata = seg_test)

> library(pROC)

>

> lda_roc <- roc(response = seg_test$Class,

+ predictor = lda_test_pred$posterior[, "PS"],

+ ## we need to tell the function that the _first_ level

+ ## is our event of interest

+ levels = rev(levels(seg_test$Class)))

> lda_roc

Call:

roc.default(response = seg_test$Class, predictor = lda_test_pred$posterior[, "PS"], levels = rev(levels(seg_test$Class)))

Data: lda_test_pred$posterior[, "PS"] in 346 controls (seg_test$Class WS) < 664 cases (seg_test$Class PS).

Area under the curve: 0.874

> # plot(exRoc print.thres = .5)

Kuhn (Pfizer R&D) APM 35 / 57

LDA ROC Curve

Specificity

Se
ns

iti
vi

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 0.8 0.6 0.4 0.2 0.0

0.500 (0.723, 0.827)

Kuhn (Pfizer R&D) APM 36 / 57

LDA Confusion Matrix

> confusionMatrix(data = lda_test_pred$class, reference = seg_test$Class)

Confusion Matrix and Statistics

Reference

Prediction PS WS

PS 549 96

WS 115 250

Accuracy : 0.7911

95% CI : (0.7647, 0.8158)

No Information Rate : 0.6574

P-Value [Acc > NIR] : <2e-16

Kappa : 0.5422

Mcnemar's Test P-Value : 0.2153

Sensitivity : 0.8268

Specificity : 0.7225

Pos Pred Value : 0.8512

Neg Pred Value : 0.6849

Prevalence : 0.6574

Detection Rate : 0.5436

Detection Prevalence : 0.6386

Balanced Accuracy : 0.7747

'Positive' Class : PS

Kuhn (Pfizer R&D) APM 37 / 57

Model Function Consistency

Since there are many modeling packages written by di↵erent people, there
are some inconsistencies in how models are specified and predictions are
made.

For example, many models have only one method of specifying the model
(e.g. formula method only)

> ## only one way here:

> rpart(y ~ ., data = dat)

>

> ## and both ways here:

> lda(y ~ ., data = dat)

>

> lda(x = predictors, y = outcome)

Kuhn (Pfizer R&D) APM 38 / 57

Generating Class Probabilities Using Di↵erent Packages

obj Class Package predict Function Syntax
lda MASS predict(obj) (no options needed)
glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

LogitBoost caTools predict(obj, type = "raw", nIter)

Kuhn (Pfizer R&D) APM 39 / 57

The caret Package

The caret package was developed to:

create a unified interface for modeling and prediction (interfaces to
216 models – up from 112 a year ago)

streamline model tuning using resampling

provide a variety of “helper” functions and classes for day–to–day
model building tasks

increase computational e�ciency using parallel processing

First commits within Pfizer: 6/2005, First version on CRAN: 10/2007

Website: http://topepo.github.io/caret/

JSS Paper: http://www.jstatsoft.org/v28/i05/paper

Model List: http://topepo.github.io/caret/bytag.html

Many computing sections in APM

Kuhn (Pfizer R&D) APM 40 / 57

Next Steps

How can we get resampled estimates of the area under the ROC curve for
the LDA model (without going to the test set)?

Let’s use five repeats of 10-fold cross-validation to assess the area under
the ROC curve with the LDA model.

First, we need to specify the model terms and what type of technique that
we are using:

> ## setting the seed before calling �train� controls the resamples

> set.seed(20792)

> lda_mod <- train(Class ~ ., data = seg_train, method = "lda")

train can use the formula and the non–formula method. The two
interfaces may lead to di↵erent results for some models that do not need
dummy variable conversions of factors.

Kuhn (Pfizer R&D) APM 41 / 57

The train Function

The default resampling scheme is the bootstrap. Let’s use five repeats of
10–fold cross–validation instead.

To do this, there is a control function that handles some of the optional
arguments.

To use five repeats of 10–fold cross–validation, we would use

> ctrl <- trainControl(method = "repeatedcv", repeats = 5)

>

> set.seed(20792)

> lda_mod <- train(Class ~ ., data = seg_train, method = "lda",

+ trControl = ctrl)

Kuhn (Pfizer R&D) APM 42 / 57

The train Function

By classification, the default performance metrics that are computed are
accuracy and the kappa statistic. For regression, they are RMSE and R2.

Instead, let’s measure the area under the ROC curve, sensitivity, and
specificity.

A custom performance function can be passed to train. The package has
one that calculates the ROC curve, sensitivity and specificity called . For
example:

> twoClassSummary(fakeData)

ROC Sens Spec

0.5020 0.1145 0.8827

Kuhn (Pfizer R&D) APM 43 / 57

The train Function

We can pass the twoClassSummary function in through trainControl.

However, to calculate the ROC curve, we need the model to predict the
class probabilities. The classProbs option will also do this:

Finally, we tell the function to optimize the area under the ROC curve
using the metric argument:

> ctrl <- trainControl(method = "repeatedcv", repeats = 5,

+ classProbs = TRUE,

+ summaryFunction = twoClassSummary)

>

> set.seed(20792)

> lda_mod <- train(Class ~ ., data = seg_train,

+ method = "lda",

+ ## Add the metric argument

+ trControl = ctrl, metric = "ROC",

+ ## Also pass in options to �lda� using �...�
+ tol = 1.0e-15)

Kuhn (Pfizer R&D) APM 44 / 57

Digression – Parallel Processing

Since we are fitting a lot of independent models over di↵erent tuning
parameters and sampled data sets, there is no reason to do these
sequentially.

R has many facilities for splitting computations up onto multiple cores or
machines

See Tierney et al (2009, Journal of Statistical Software) for a recent
review of these methods

Kuhn (Pfizer R&D) APM 45 / 57

foreach and caret

To loop through the models and data sets, caret uses the foreach package,
which parallelizes for loops.

foreach has a number of parallel backends which allow various technologies
to be used in conjunction with the package.

On CRAN, these are the doSomething packages, such as doMC, doMPI,
doSMP and others.

For example, doMC uses the multicore package, which forks processes to
split computations (for unix and OS X). doParallel works well for Windows
(I’m told)

Kuhn (Pfizer R&D) APM 46 / 57

foreach and caret

To use parallel processing in caret, no changes are needed when calling
train.

The parallel technology must be registered with foreach prior to calling
train:

> library(doMC) # on unix, linux or OS X

> ## library(doParallel) # windows and others

> registerDoMC(cores = 2)

Kuhn (Pfizer R&D) APM 47 / 57

LDA Resampling Results

> lda_mod

Linear Discriminant Analysis

1009 samples

58 predictor

2 classes: 'PS', 'WS'

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 908, 908, 909, 909, 908, 908, ...

Resampling results

ROC Sens Spec ROC SD Sens SD Spec SD

0.8735494 0.8576141 0.7124609 0.04039168 0.05127234 0.08085324

The value 0.8735 is the average of the 50 resamples. The test set estimate
was 0.874.

Kuhn (Pfizer R&D) APM 48 / 57

Other Models

train provides wrappers to a lot of di↵erent models/packages. A list can
be found on the project homepage and by checking ?models.

Many of these models have tuning parameters. There are two ways to
specify the tuning parameters:

tuneLength: train has methods for determining grids of the
parameters. Using this argument let’s the user prescribe how many
candidate values to evaluate.

tuneGrid: you can also create a data frame where the columns are
the tuning parameters and the rows are the combinations that should
be evaluated.

Kuhn (Pfizer R&D) APM 49 / 57

Tuning the Number of Neighbors

Another new argument that we can pass to train is preProc. This applies
di↵erent types of pre–processing to the predictors and is done within
resamples. It is also automatically applied when predicting too.

We will center and scale the predictors so that the distance metric isn’t
biased by scale.

> ## The same resamples are used

> set.seed(20792)

> knn_mod <- train(Class ~ ., data = seg_train,

+ method = "knn",

+ trControl = ctrl,

+ ## tuning parameter values to evaluate

+ tuneGrid = data.frame(k = seq(1, 25, by = 2)),

+ preProc = c("center", "scale"),

+ metric = "ROC")

Kuhn (Pfizer R&D) APM 50 / 57

Tuning the Number of Neighbors

> knn_mod

k-Nearest Neighbors

1009 samples

58 predictor

2 classes: 'PS', 'WS'

Pre-processing: centered (58), scaled (58)

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 908, 908, 909, 909, 908, 908, ...

Resampling results across tuning parameters:

k ROC Sens Spec ROC SD Sens SD Spec SD

1 0.7137900 0.7783730 0.6600853 0.06125686 0.05111556 0.07329513

3 0.8304147 0.8236855 0.7151778 0.03680898 0.05055039 0.07470409

5 0.8541445 0.8218056 0.7355903 0.03665873 0.04970615 0.07092892

7 0.8653454 0.8299851 0.7398720 0.03600259 0.05286398 0.07515553

9 0.8702121 0.8318552 0.7452774 0.03582426 0.04954339 0.07204114

11 0.8752995 0.8372024 0.7505405 0.03614511 0.04751353 0.06814953

13 0.8734974 0.8441022 0.7408108 0.03792648 0.04780407 0.07110998

15 0.8760790 0.8412698 0.7402845 0.03739929 0.05258230 0.07126982

17 0.8784485 0.8453472 0.7494310 0.03790634 0.05157438 0.07089234

19 0.8790282 0.8459871 0.7494737 0.03722205 0.05210655 0.06577087

21 0.8796156 0.8469196 0.7558464 0.03824543 0.05187434 0.06394297

23 0.8797082 0.8494345 0.7521195 0.03825331 0.04987768 0.07036613

25 0.8796015 0.8465923 0.7462589 0.03845505 0.05034432 0.07717937

ROC was used to select the optimal model using the largest value.

The final value used for the model was k = 23.

Kuhn (Pfizer R&D) APM 51 / 57

K–Nearest Neighbors Tuning

> ggplot(knn_mod)

0.75

0.80

0.85

0 5 10 15 20 25
#Neighbors

RO
C

 (R
ep

ea
te

d
C

ro
ss
−V

al
id

at
io

n)

Kuhn (Pfizer R&D) APM 52 / 57

Predicting New Samples

> ## to get the classes:

> predict(knn_mod, newdata = head(seg_test))

[1] PS PS WS WS PS WS

Levels: PS WS

> ## We choose �prob� to get class probabilities:

> predict(knn_mod, newdata = head(seg_test), type = "prob")

PS WS

1 0.9565217 0.04347826

2 0.8695652 0.13043478

3 0.2173913 0.78260870

4 0.3043478 0.69565217

5 1.0000000 0.00000000

6 0.4782609 0.52173913

Kuhn (Pfizer R&D) APM 53 / 57

Comparing Models

Many of the predictors are skewed. Would transforming them via the
Yeo–Johnson transformation help?

> ## The same resamples are used

> set.seed(20792)

> knn_yj_mod <- train(Class ~ ., data = seg_train,

+ method = "knn",

+ trControl = ctrl,

+ tuneGrid = data.frame(k = seq(1, 25, by = 2)),

+ preProc = c("center", "scale", "YeoJohnson"),

+ metric = "ROC")

>

> ## What was the best area under the ROC curve?

> getTrainPerf(knn_yj_mod)

TrainROC TrainSens TrainSpec method

1 0.8888078 0.8522768 0.7586344 knn

Kuhn (Pfizer R&D) APM 54 / 57

Comparing Models

> ## Conduct o a paired t-test on the resampled AUC values to control for

> ## resample-to-resample variability:

> compare_models(knn_yj_mod, knn_mod, metric = "ROC")

One Sample t-test

data: x

t = 4.4595, df = 49, p-value = 4.796e-05

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.004999086 0.013200217

sample estimates:

mean of x

0.009099651

> ## Yes, but not by much

Kuhn (Pfizer R&D) APM 55 / 57

Some Notes on Tuning

train attempts to fit as few models as possible. In quite a few places,
we use a “sub–model trick” to get predictions for some sub–models
without refitting

random search, where the tuning parameters are randomly selected,
can be used when you want to try a larger range of parameters

adaptive resampling (aka racing) can be used to reduce the time to
tuning the models based on interim analyses to discard candidate
sub–models

the resamples class can be used to visualize and compare models on
a larger scale than compare models function

train allows for much more flexibility to customize the tuning process

Kuhn (Pfizer R&D) APM 56 / 57

Final Notes

There’s a lot more to tell about predictive modeling in R and what caret
can do.

There are many functions for feature selection in the package. The website
has more information on this and other aspects.

Thanks for listening!

Kuhn (Pfizer R&D) APM 57 / 57

