
Predictive Models in R Clustered by Tag Similarity

Max Kuhn

Pfizer Global R&D
Nonclinical Statistics

Groton, CT
max.kuhn@pfizer.com

March 17, 2014

Motivation

Theorem (No Free Lunch)

In the absence of any knowledge about the prediction problem, no model
can be said to be uniformly better than any other

Given this, it makes sense to use a variety of different models to find one
that best fits the data

R has many packages for predictive modeling (aka machine learning)(aka
pattern recognition) . . .

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 2 / 21

Model Function Consistency
Since there are many modeling packages written by different people, there
are some inconsistencies in how models are specified and predictions are
made.

For example, many models have only one method of specifying the model
(e.g. formula method only)

The table below shows the syntax to get probability estimates from several
classification models:

obj Class Package predict Function Syntax
lda MASS predict(obj) (no options needed)
glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

LogitBoost caTools predict(obj, type = "raw", nIter)

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 3 / 21

The caret Package

The caret package was developed to:

create a unified interface for modeling and prediction (currently 147
different models)

streamline model tuning using resampling

provide a variety of “helper” functions and classes for day–to–day
model building tasks

increase computational efficiency using parallel processing

First commits within Pfizer: 6/2005

First version on CRAN: 10/2007

Website: http://caret.r-forge.r-project.org

JSS Paper: www.jstatsoft.org/v28/i05/paper

Book: Applied Predictive Modeling (AppliedPredictiveModeling.com)

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 4 / 21

http://caret.r-forge.r-project.org
http://appliedpredictivemodeling.com/
http://appliedpredictivemodeling.com/

Recent Package Updates

The last major update to the package added a new feature: a
straightforward and well–documented method for adding custom models.

The new approach modularizes the model code in a faux database.
Previously the code was embedded in the package’s internal functions.

The entry for a model has a set of modules, such as fit (the code to train
the model), predict etc.

For a custom model, the user can create these elements de novo or copy
the functions from another model and modify them.

There are several examples on the packages web page.

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 5 / 21

Getting Model Code

> svm_code <- getModelInfo("svmRadial", regex = FALSE)[[1]]

> unlist(lapply(svm_code, class))

label library type parameters grid

"character" "character" "character" "data.frame" "function"

loop fit predict prob predictors

"NULL" "function" "function" "function" "function"

tags levels sort

"character" "function" "function"

> head(svm_code$prob, 5)

1 function (modelFit, newdata, submodels = NULL)

2 {

3 out <- try(predict(modelFit, newdata, type = "probabilities"),

4 silent = TRUE)

5 if (class(out)[1] != "try-error") {

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 6 / 21

Describing Models

One question that I’m asked periodically is “how different are the models
that are used by the package?”

To help answer this, I added another “module” that is a vector of one or
more tags describing the model. On average, each model has 3 tags.

> all_mods <- getModelInfo()

> all_tags <- unlist(lapply(all_mods, function(x) x$tag))

> set.seed(1218)

> sample(unique(all_tags), 10)

[1] "Prototype Models" "Self-Organising Maps"

[3] "Regularization" "Logistic Regression"

[5] "Cost Sensitive Learning" "Logic Regression"

[7] "Kernel Method" "Bagging"

[9] "Discriminant Analysis" "Support Vector Machines"

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 7 / 21

Describing Models

Now that we have these data, how can we quantify how similar the models
are from one another?

We can get all the unique tags and create a binary matrix with tags in
columns and models in rows (149× 41).

> tag_list <- unique(all_tags)

> binary <- matrix(0, ncol = length(tag_list),

+ nrow = length(all_mods))

> colnames(binary) <- tag_list

> rownames(binary) <- names(all_mods)

> for(i in seq(along = all_mods)) {

+ has_tag <- colnames(binary) %in% all_mods[[i]]$tags

+ binary[i, has_tag] <- 1

+ }

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 8 / 21

Tags → Similarity

> binary[1:5, 1:5]

Tree-Based Model Ensemble Model Boosting

ada 1 1 1

AMORE 0 0 0

avNNet 0 1 0

bag 0 1 0

bagEarth 0 1 0

Implicit Feature Selection Neural Network

ada 1 0

AMORE 0 1

avNNet 0 1

bag 0 0

bagEarth 1 0

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 9 / 21

Describing Models

Now that we have these data, how can we quantify how similar the models
are from one another?

For binary variables, one similarity measure is the Jaccard measure. For
models A and B :

J =
Nab

Na× +N×b +N××

We compute these pair–wise and get a 149× 149 similarity matrix

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 10 / 21

Tags → Similarity

To do this, I used the proxy package to first compute the distance
between two models and then convert that to a similarity:

> library(proxy)

>

> D <- dist(binary, method = "Jaccard")

> Dm <- as.matrix(D)

> sim <- 1 - Dm

> dim(sim)

[1] 149 149

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 11 / 21

Tags → Similarity

> round(sim[1:5, 1:15], 2)

ada AMORE avNNet bag bagEarth bagFDA bayesglm bdk

ada 1.00 0.00 0.14 0.2 0.33 0.33 0 0

AMORE 0.00 1.00 0.25 0.0 0.00 0.00 0 0

avNNet 0.14 0.25 1.00 0.5 0.33 0.33 0 0

bag 0.20 0.00 0.50 1.0 0.50 0.50 0 0

bagEarth 0.33 0.00 0.33 0.5 1.00 1.00 0 0

blackboost Boruta brnn bstLs bstSm bstTree C5.0

ada 0.75 0.33 0.00 0.60 0.75 0.75 0.80

AMORE 0.00 0.00 0.33 0.00 0.00 0.00 0.00

avNNet 0.17 0.14 0.17 0.14 0.17 0.17 0.12

bag 0.25 0.20 0.00 0.20 0.25 0.25 0.17

bagEarth 0.17 0.14 0.00 0.33 0.40 0.17 0.29

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 12 / 21

How Similar are Models?: A Clustered Similarity Plot

> library(corrplot)

> corrplot(sim, order = "hclust", outline = FALSE,

+ addgrid.col = NA, tl.pos = "n")

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 13 / 21

Visualizing Similarity

One way of visualizing these relationships is to create a graph model (aka
network diagram).

To do this, we could use a threshold for similarity between two models to
label them as similar (i.e. connected) or not.

I used a threshold of 0.58 based on OEB technology.

> connected <- sim > .58

There are a few packages to make this visualization in R (igraph,
Rgraphviz) but the results were a mess once you try to label each model
(i.e. node).

I decided to use Mike Bostock’s force directed graph code in D3.

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 14 / 21

Formatting the Graph

To use this, I needed to convert the matrix that I have to his format (in
JSON).

First, the nodes need to be declared. For example:

{

"nodes":[

{"name":"node1","group":1},

{"name":"node2","group":1},

{"name":"node3","group":1},

]

}

The group is a field that can be used to color the nodes. I’m going to skip
that step here but the real graph groups the model by type (e.g.
classification, regression or both).

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 15 / 21

Formatting the Graph

> nodes <- paste(' {"name":"', rownames(sim),

+ '","group":1}', sep = "")

> nodes <- paste(' "nodes":[\n',
+ paste(nodes, collapse = ",\n"),

+ '\n],', sep = "")

For the first three models, this looks like:

"nodes":[

{"name":"ada","group":1},

{"name":"AMORE","group":1},

{"name":"avNNet","group":1}

],

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 16 / 21

Formatting the Graph

Now we need to define the connections. This should look like this:

"links":[

{"source":1,"target":0,"value":1},

{"source":2,"target":0,"value":1}

]

The numbers are the node index (e.g. node 0 is connected to nodes 1 and
2) and the value is the weight of the line.

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 17 / 21

Formatting the Graph

> links <- NULL

> for(i in 1:nrow(sim)){

+ for(j in i:ncol(sim)){

+ if(i != j) {

+ if(sim[i,j] > .58) {

+ tmp <- paste(' {"source":', i - 1,

+ ',"target":', j - 1,

+ ',"value":1}', sep = "")

+ links <- if(is.null(links)) tmp else c(links, tmp)

+ rm(tmp)

+ }

+ }

+ }

+ }

> cat(links[1:2], sep = "\n")

{"source":0,"target":8,"value":1}

{"source":0,"target":11,"value":1}

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 18 / 21

Formatting the Graph

> links <- paste(' "links":[\n',
+ paste(links, collapse = ",\n", sep = ""),

+ '\n]\n', sep = "")

> ## cat('{\n', nodes, links, '}', sep = "",

> ## file = "model_tags.json")

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 19 / 21

Using D3

The rest is simple: put the json file with the D3 code from mbostock’s
page and you are all done!

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 20 / 21

Session Info

R Under development (unstable) (2014-03-14 r65186),
x86_64-apple-darwin10.8.0

Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Other packages: caret 6.0-24, corrplot 0.73, ggplot2 0.9.3.1, knitr 1.5,
lattice 0.20-27, proxy 0.4-12

Loaded via a namespace (and not attached): car 2.0-19, codetools 0.2-8,
colorspace 1.2-4, dichromat 2.0-0, digest 0.6.4, evaluate 0.5.1, foreach 1.4.1,
formatR 0.10, grid 3.2.0, gtable 0.1.2, highr 0.3, iterators 1.0.6, labeling 0.2,
MASS 7.3-30, munsell 0.4.2, nnet 7.3-7, plyr 1.8.1, proto 0.3-10,
RColorBrewer 1.0-5, Rcpp 0.11.1, reshape2 1.2.2, scales 0.2.3, stringr 0.6.2,
tools 3.2.0

This presentation was created with the knitr function at 17:36 on
Monday, Mar 17, 2014.

Max Kuhn (Pfizer Global R&D) caret March 17, 2014 21 / 21

